科技日报记者 吴长锋
记者从中科院合肥研究院获悉,该院固体所功能材料物理与器件研究部童鹏研究员课题组与计算物理与量子材料研究部张永胜研究员课题组合作,在六角硫化物中发现了温度驱动的巨大热导率跳变效应,并给出理论解释。该材料体系易于合成、原料环境友好,在热流主动控制领域具有潜在的应用价值。相关研究结果发日前表在期刊《Acta Materialia》上。
作者供图
目前约90%能源的使用涉及热量的产生与操控。因此有效控制热量传导对于提高能源利用率、实现节能减排和可持续发展均具有重要意义。材料的热导率大小是决定其热传导能力的关键因素之一。然而,如果材料热导率随温度变化而发生突变,则可根据导热能力的不同实现对热流的自主控制。近年来此类材料已得到了研究人员的广泛关注。
研究人员发现六角相硫化物在低温反铁磁至高温顺磁相变处,热导率出现巨大的可逆跳变,变化率最大能超过200%,其远高于已知的典型固态热导率突变材料,如镍钛合金等。为了阐明热导率突变的物理机制,研究人员通过NiS对其电子能带结构计算,结合求解玻尔兹曼输运方程,发现高于相变温度的顺磁态为金属,具有较大的电子热导率。研究人员用少量金属银粘接六角硫化物,通过与基体之间形成的纳米过渡层,金属银对热应力起到了很好的缓冲和释放作用,显著地改善了材料的脆性,同时也提高了材料的机械加工性能和热循环稳定性。
由于六角硫化物体系材料体系易于合成、原料环境友好,因此在热流主动控制领域具有潜在的应用价值。当环境寒冷时,低热导率可以延缓热量散失,起到保温作用;而在炎热的环境下,高热导率有助于热量快速散发,防止器件过热。如可用于维持如电池、芯片的最佳工作温度。该材料也可以与具有相反热导率温度依赖关系的材料联合使用,构筑热二极管。
编辑:张爽
审核:朱丽